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ABSTRACT

Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has
received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce
the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation
may further endanger arboreal mammals that play principal role in the dispersal of large seeded fruits, plant
community assembly and diversity in these systems. Data on the spatial arrangement and extent of dry
forest and other land cover types is greatly needed to enhance studies of forest fragmentation effects on
animal populations. To address this issue, we compared two Random Forest decision tree models for
land cover classification in a Nicaraguan tropical dry forest landscape with and without the use of terrain
variables derived from Space Shuttle Radar and Topography Mission digital elevation data (SRTM-DEM).
Landsat Enhanced Thematic Mapper (ETM+) bands and vegetation indices were the principle source of
spectral variables used. Overall classification accuracy for nine land cover types improved from 82.4% to
87.4% once terrain and spectral predictor variables were combined. Error matrix comparisons showed
that class accuracy was significantly greater (z=2.57, p-value <0.05) with the inclusion of terrain variables
(e.g., slope, elevation and topographic wetness index) in decision tree models. Variable importance metrics
indicated that a corrected Normalized Difference Vegetation Index (NDVIc) and terrain variables improved
discrimination of forest successional types and wetlands in the study area. Results from this study demonstrate
the capability of terrain variables to enhance land cover classification and habitat mapping useful to
biodiversity assessment in tropical dry forest.
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Cobertura de floresta tropical seca e decidua abrange até 42% da floresta tropical do mundo, mas t€ém
recebido muito menos atencao que a floresta em areas tropicais imidas. A mudanca de uso de terra
ameaca grandemente reduzir a extensao de floresta seca que € sabida conter niveis altos de diversidade
de planta e animal. O fragmentacao de floresta pode mais por em perigo mamiferos arboreais que
servem papel principal na dispersao de frutas sementadas grandes, a assembléia de comunidade de planta
e diversidade nestes sistemas. Os dados no arranjo espacial e extensdo de floresta seca e outros tipos de
cobertura de terra sdo grandemente precisados para aumentar estudos de efeitos de fragmentagdo de
floresta em populagdes animais. Para direcionar a esta questdo nds comparamos dois modelos aleatorios
de arvore de decisdo da floresta para classifica¢@o de cobertura de terra numa paisagem de floresta seca
tropical nicaraguense com e sem o uso de varidveis de terreno derivadas do Radar da Langadeira do
Espaco e dados digitais de elevagido da Missdo Topografia (SRTM-DEM). As faixas do Tragador Landsat
Tematico Aumentado (ETM +) e indices de vegetagdo eram a fonte principal de variaveis espectrais
usados. Exatiddo total de classificacdo para nove tipos de cobertura de terra melhorou de 82,4% a
87,4% ao logo que variaveis de terreno e preditor espectral foram combinadas. As comparacdes de
matriz de erro mostraram que exatiddo de classe era significativamente maior (z= 2,57, p-valor <0,05)
com a inclusdo de variaveis de terreno (por exemplo, declive, elevagio e indice topografico de umidade)
em modelos de arvore de decisdo. Métricos da importancia dos variaveis indicaram que um indice
corrigido de Vegetacdo de Diferenga Normalizado (NDVIc) e varidveis de terreno melhoraram
discriminagéo de tipos de successional de floresta e terras imidas na 4rea de estudo. Os resultados deste
estudo demonstram a capacidade de varidveis de terreno para aumentar classificag@o de cobertura de
terra e traga de habitat util para avaliar a biodiversidade em floresta seca tropical.

Palavras-chave: STRM-DEM, Landsat ETM+, Random Forest classifier, floresta tropical seca, cobertura
do solo.

1.INTRODUCTION

Tropical dry and deciduous forest is estimated to occupy up to 42% of the world’s tropical and
subtropical landmass characterized as open or closed forest (Murphy and Lugo 1986). The effects of
forest fragmentation on biodiversity in tropical dry environments are of critical concern in areas where
human land use has substantially reduced forest cover (Defries et al. 2005). Although dry forest has been
shown to be highly vulnerable to agricultural conversion and other threats (Miles et al. 2006), it has received
far less attention from the scientific community than moist or wet tropical forest types (Sanchez-Azofeifa et
al. 2005).

Efforts to maintain and restore dry forest may be affected by fragmentation of habitats and animal
populations that are linked to ecosystem processes such as seed dispersal, plant community assembly and
diversity (Holl and Kappelle 1999, Stevenson and Aldana 2008). Arboreal mammals that are important
to dispersal of large seeded plants are of special concern as forest fragmentation can inhibit daily travel as
well as forest connectivity important to animal movement and dependant plant populations (Chapman and
Onderdonk 1998, Pacheco and Simonetti 2000). Fragmentation also increases human pressure such as
hunting and capture of seed dispersing monkeys and birds for pets (Ortiz-Martinez and Rico-Gray 2007).
However, threats to wildlife and plant species are mediated by species-specific sensitivity to forest disturbance
and the types of matrix surrounding forest (Debinski and Holt 2000). Thus, the spatial context of remaining
forest fragments and neighboring land use activities may enhance or degrade ecosystem function.
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Methods to assess the spatial structure and viability of arboreal mammals and other animal populations
often require ecological field studies that are combined with land cover information derived from remotely
sensed data (Kerr and Ostrovsky 2003). Multispectral and multitemporal satellite images have played a
primary role in characterizing land cover change and deforestation rates (Lu et al. 2004), but are fast
becoming a fundamental component of conservation planning and biodiversity assessment (Sesnie et al.
2008, Stickler and Southworth 2008). However, improved cost effective and accurate methods for
discriminating land cover types are needed for mapping and modeling habitat and animal population dynamics
over large areas (Stickler and Southworth 2008). The need for low-cost data resources is particularly
important for conservation research in developing countries where funding for mapping is often limited.

Satellite imagery and global coverage of digital elevation data from the Space Shuttle Radar and
Topography Mission (SRTM-DEM) available through the Global Land Cover Facility (GLCF; http://
glcfumiacs.umd.edu/index.shtml) greatly increases access to no-cost data resources for land cover mapping.
In addition, Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic
Mapper (ETM+) image archives from the >30 year program will become freely available to the public as
of February 2009 (USGS 2008). Increased access to satellite and SRTM-DEM data are anticipated to
improve opportunities for integrated mapping of land cover types important to conservation planning and
biodiversity assessment (Sesnie el al. 2008).

For this research we combined Landsat ETM+ imagery with terrain variables derived from 90m
SRTM-DEM data to map tropical dry forest fragments and agricultural land cover types in the Rivas
Province of Southwestern Nicaragua. Forest and agricultural lands are concentrated across the narrow
Rivas Isthmus, between Lake Nicaragua and the Pacific Coast. This area is a priority for regional
conservation efforts because it contains forest remnants representative of endangered Central American
lowland tropical dry forest. Forest fragments maintain western Nicaragua’s last surviving populations of
the black-handed spider monkey (Ateles geoffroyi). The spider monkey is an important seed disperser in
tropical forests and is a useful indicator species of functional forest structure and connectivity (Pacheco
and Simonetti 2000, Link and Di Fiore 2006). Accurate forest and agricultural cover maps are essential
for assessing the viability of forest fragments to maintain threatened spider monkey populations. Land
cover maps characterizing forest fragments and linkages can be used to prioritize conservation efforts such
as the establishment of new protected areas and the location of restoration efforts.

In developing and testing a low-cost method for mapping tropical dry forest and agricultural land,
our principle objective was to compare differences in overall and individual classification accuracy for land
cover types with and without the use of SRTM-DEM derived variables. Terrain variables can potentially
improve land cover classification accuracy as land use activities and infrastructure (e.g., roads) are typically
linked to the biophysical environment (Sader and Joyce 1988). Therefore, we hypothesized that terrain
variables would significantly enhance land cover classification and map accuracy over classifiers using
spectral predictor variables alone.

Our second objective was to examine the utility of freely available data, statistical software and
robust machine learning techniques to map land cover for a Nicaraguan dry forest landscape of conservation
interest. We used the non-parametric Random Forest decision tree classifier (Breiman 2001) to leverage
conditional relationships in the data without making distributional assumptions problematic with parametric
methods (Friedl and Brodley 1997). Random Forest decision trees have also been shown to obtain
superior prediction accuracy over a number of other classifiers (Gislason et al. 2006). These modes of
analysis were geared toward integrating widely available multispectral and terrain variables and statistical
tools for land cover classification and biodiversity assessment. Validated land cover data developed with
this study is being incorporated with studies investigating forest fragmentation effects on the threatened
black-handed spider monkey.
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2.1.STUDY AREA

The study area encompasses the narrow isthmus and Rivas Province of southwestern Nicaragua to
the west of Lake Nicaragua, hereafter referred to as the “Rivas study area” (Figure 1). The Rivas study
area contains the highest concentration of tropical dry forest in Nicaragua. Forest types are defined as
tropical dry deciduous forest along the lowland Pacific coast to moist broadleaf forest at higher elevations
(Figure 1). Elevations in the Rivas area are between sea level and 600m in the coastal mountain range.
Annual precipitation averages from 1400 to 2000mm with dry periods producing <50mm of rainfall per
month between December and April. Average annual air temperature is 26.7 °C. Land colonization and
agricultural expansion since the 1940s has lead to a mixture of land cover types consisting of remnant
coastal wetlands and mature and secondary forest re-growth amid pasture and crop lands. Conservation
efforts by the non-government organization Paso Pacifico are presently aimed at maintaining and restoring
forest connectivity in the Rivas study area to contribute to the development of the Mesoamerican Biological
Corridor (MBC). Forest restoration activities are to replant native tree species and encourage natural
regeneration in successional areas intended to sequester carbon and recover critical wildlife habitat.
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Figure 1 - Study area covering Nicaragua’s southwestern isthmus with moist and tropical dry forest that are con-
nected forest in northwestern Costa Rica (lower right). Dry (a) and wet (b) season images indicate a contrast between
leaf-off and leaf-on periods for deciduous forests. At the top is a TM image from March of 1986 and bottom is a late wet
season ETM+ image from January 2000.
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2.2. IMAGE PROCESSING AND LAND COVER CLASSIFICATION

An orthorectified Landsat image (WRS2 path 16 row 52) with low cloud cover from January of
2000 and 90m SRTM-DEM data were downloaded from GLCF image archives. On our study area, the
month of December is typically the beginning of the dry season; however variation in rainfall patterns may
extend the wet season and leaf-on phase. Therefore, the January ETM+ image was contrasted with a late
dry season TM image from 1986 before it was considered representative of a primarily leaf-on period
(Figure 1).

A set of predictor variables derived from ETM+ spectral bands and SRTM-DEM elevation data
(Table 1) were used to model and classify the land cover types described in the section below. Digital
numbers (DN) for ETM+ spectral bands 1-5 and 7 (30-m resolution) were converted to reflectance
values taken at the sensor using standard calibration coefficients. The panchromatic ETM+ band (15-m
resolution) was also included as a predictor variable and thermal band 6 was not used. No geometric
correction was applied as land features visible in the ETM+ image corresponded spatially with 2004
orthorectified aerial photographs (1-m pixels). All predictor variables were resampled to a 30m pixel
resolution to match ETM+ bands. The normalized difference vegetation index (NDVI) and corrected
NDVI (NDVIc) that are sensitive to Plant Area Index (PAI) and canopy closure (Nemani et al. 1993,
Pocewicz et al. 2004) were used to enhance differences between late and early successional forest. Terrain
variables thought to influence land use were derived from the SRTM-DEM. Topographic wetness index
was derived using the Topocrop Terrain Analysis extension in ArcView 3.3 (ESRI 2002) that models soil
moisture patterns (Beven and Kirkby 1979, Moore et al. 1991). Aspect was transformed to an index of
solar radiation (Roberts and Cooper 1989).

Nine land cover categories were used for classification model training and mapping purposes and
that could be readily interpreted from digital 2004 panchromatic aerial photographs. Because the successional
status of forest remnants, canopy structure and composition were anticipated to play arole in the distribution
and movement of arboreal frugivores on the study area, discriminating mature or late successional forest
from young secondary forest regrowth (hereafter termed “forest” and “regrowth” respectively) was a
primary focus for this study. Vegetation such as reed grass marshes, flood plain or inundated forest and
mangroves were grouped into a general category termed wetlands. Other land cover categories contributing
to landscape heterogeneity and possible wildlife habitat were pasture land, horticultural crops, bare soil,
rock and urban areas. Cloud and shadows were masked from the classified image as a post-processing
step.

A supervised land cover classification approach was used by identifying a set of training sites and
pixels representing each land cover type. Training locations were interpreted from the digital aerial
photographs and placed over the 2000 ETM+ image using geographically linked viewers in the ENVI v.
3.3 image processing package (ITT Industries Inc. 2006). From the training sample data, the Random
Forest decision tree classifier in the R statistical package v. 2.6.2 (The R Foundation for Statistical Computing
2008) was used to map land cover from the set of spectral and terrain predictor variables. Random
Forest decision tree models were derived from multiple model runs (n = 2000 classification trees) with
bootstrap training samples leaving a portion of the data aside for accuracy assessment. Each tree was
independently derived and tested for accuracy by running data withheld from the training sample (about 1/
3) down the respective tree. Each tree contributed a unit vote for the most popular class (e.g., a land
cover category) and error was aggregated from the number of trees requested (Breiman 2001).
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Table 1 - Predictor variables used with Random Forest classification trees for land cover classification.

Landsat ETM+ Units Spatial res. (m) Equation

bl 0.45-0.51pm 30 _

b2 0.52-0.60 um 30 -~

b3 0.63-0.69 um 30 _

b4 0.75-0.90 pm 30 _

b5 1.55-1.75 pm 30 -~

b7 2.08-2.35 um 30 _

pan 0.52-0.90 pm 15 _

NDVI -1-+1 30 b4-b3/b4+b3

NDVIc -1-+1 30 b4-b3/b4+b3*[1-(b5-
bsmin)/(bsmax'bsmin)]l

SRTM-DEM

Elevation (el) m 90 _

Slope % 90 _

Topographic wetness index (twi) 0-16 90 _

Transformed aspect (trasp) 0-1 90 (1-cos((aspect-30)*1/180))/2

'Band 5 maximum and minimum values were taken from an open pasture and closed forest canopy on
level terrain.

2.3. DATAANALYSIS

Classification accuracy was evaluated for each land cover type from two separate classifiers with
and without the use of SRTM-DEM derived terrain predictor variables for comparison. Error matrices for
each classifier were used to compare overall percent accuracy and percent accuracy within each land
cover category (Congalton and Green 1999). The relationship between land cover, terrain variables and
classification accuracy was tested by comparing correctly classified pixels left out of the bootstrap training
sample. Therefore, correctly classified pixels along the main diagonal of the error matrix were treated as
a discrete random variable and compared using a Wilcoxon signed rank test (test statistic=Z, 4= 0.05).
We hypothesized that the inclusion of terrain variables would lead to a significantly greater (« >0, P <
0.05) number of correctly classified validation pixels. Relationships in the data such as the influence of
topography and soil moisture on land use were anticipated to improve accuracy by accounting for these
conditions in the set of predictor variables.

The importance of predictor variables to land cover classification accuracy was also estimated using
Random Forest trees and permuting each predictor out of multiple decision tree model runs (2000 trees).
The mean decrease in accuracy from class sample data left out of bootstrap training samples was used as
ameasure of variable importance (Breiman 2001). Further technical details for machine learning classifiers
and spatial modeling procedures used with this study can be obtained from randomForest and yalmpute
documentation with the R statistics package (http://cran.r-project.org/).

3.RESULTS

Error matrices from the two separate Random Forest classifiers resulted in greater land cover
classification accuracy when terrain variables were included (Table 2a, b). Overall class accuracy increased
from 82.4% to 87.4% with the addition of terrain variables. Terrain variables also contributed to a notable
reduction in misclassification error rates for individual land cover categories with the exception of horticulture
crops (Table 2a, b). Particularly important to this study was a 3% to 6% reduction in misclassification
error for the two forest and regrowth categories in addition to a 20% reduction for the wetlands category.
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Terrain data significantly increased (Z=2.57, P<0.05) the number of correctly classified validation pixels
based on error matrix comparisons (main diagonal) from the two separate classifiers. Map accuracy was
e” 80% for land cover categories using all thirteen ETM+and STRM-DEM variable, which we considered
exceptional for characterizing landscape heterogeneity and forest fragmentation patterns in the study area.

Both spectral and terrain variables were important in the accurate classification of forest and wetlands
types (Figure 2). Overall, NDVI, NDVIc, ETM+ band 7 (mid-infrared) were the most important variables.
However, NDVIc and percent slope were among the most important variables for accurately classifying
both regrowth and wetlands categories. NDVIc was also highly important to accurately discriminating
forest from other land cover types (Figure 2). The separability of forest and regrowth areas was greatly
improved with NDVIc when compared to NDVI (Figure 3a, b). Recalibrating NDVI for open and
closed forest canopy conditions using the mid-infrared ETM+ band 5 dramatically improved the sensitivity
to forest structural differences between the two successional classes (Figure 3b).

Mapped forest and regrowth areas corresponded with remaining forest occurring on steep or uneven
terrain less suitable for agriculture (Figure 4). More extensive forest and regrowth areas were primarily
observed in mountainous terrain (Figures 4, 5). Conversely, areas of low topography along the west edge
of Lake Nicaragua were largely dominated by agricultural lands with the exception of coastal wetlands and
forest retained along riparian corridors (Figure 5). Indeed, the relationship between topography, land use
and spatial location of land cover types helped to explain a statistically significant increase in overall

classification accuracy from comparisons above.

Variation in annual and seasonal rainfall in the study area was also important to accurately estimating
the remaining extent of tropical dry forest and regrowth in the study area. Visual comparisons of images
from leaf-off and leaf-on periods indicate that the extent of forest categories would likely be severely
underestimated from dry season imagery (Figure 4). Images obtained during the late dry season (March)
suggested that extensive areas are devoid of green vegetation and forest cover in the Rivas study area
(Figure 4). Despite the onset of a dry season as early as December, the January ETM+ image and land
cover classification showed that forest and regrowth areas were visually consistent forested areas in high
spatial resolution aerial imagery (Figure 4). Inter-annual differences and extended periods of rainfall in
some years are important for obtaining low cloud cover images during leaf-on periods for accurate
characterization of tropical dry forest cover.
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Figure 2 - Random Forest predictor variable importance plot for classifying forest, regrowth and wetlands land cover
types in addition to the overall mean decrease in classification accuracy (importance) attributed to each predictor

variable.
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Table 2 - Error matrices generated from the Random Forest classifier using a) spectral predictor variables only and b)
spectral and terrain predictor variables. Error is estimated from predicted class samples from data left out of the
bootstrap training sample.

a)
Ref.

crops forest pasture regrowth rock soil urban  water wetlands  Error

crops 65 1 3 1 0 0 0 0 6 14.5%
forest 0 110 0 17 0 0 0 1 3 16.0%

S pasture 1 0 85 6 1 7 0 0 1 15.8%
% regrowth 1 24 4 83 0 0 0 0 1 26.5%
& rock 0 0 0 2 25 2 1 1 0 19.4%
soil 0 0 3 0 2 50 6 0 0 18.0%
urban 0 0 2 0 0 11 32 0 0 28.9%
water 0 0 0 0 3 0 0 113 0 2.6%
wetlands 7 3 1 4 0 0 0 0 25 37.5%

b)
Ref.

crops forest pasture regrowth  rock soil urban  water wetlands  Error

crops 65 2 5 1 0 0 0 0 3 14.5%
forest 0 114 0 15 0 0 0 1 1 13.0%

?_,3 pasture 2 0 89 5 1 4 0 0 0 11.9%
'—q% regrowth 1 19 3 90 0 0 0 0 0 20.4%
& rock 0 0 0 1 28 0 0 1 1 9.7%
soil 0 0 3 0 1 54 3 0 0 11.5%
urban 0 0 2 0 0 7 36 0 0 20.0%
water 0 0 0 0 1 0 0 115 0 0.9%
wetlands 5 0 0 2 0 0 0 0 33 17.5%
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Figure 3 - Separability comparison of forest and regrowth areas attributed by a) NDVI and b) NDVIc values.
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Figure 4 - Forest and regrowth areas within the Rivas study area viewed from leaf-off and leaf-on Landsat images
(top). Pasture, forest and regrowth areas mapped from SRTM-DEM derived terrain variables and the leaf-on ETM+

image correspond well with 2004 panchromatic orthophotographs from the study area (bottom).
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Figure 5 - Land cover map of the Rivas study area from Random Forest classification trees combining Landsat ETM+
spectral variables and SRTM-DEM derived terrain predictor variables.
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4. DISCUSSION AND CONCLUSIONS

Dry forest and regrowth areas in addition to other land cover types appear to be spatially structured,
in part, by the biophysical environment and land use activities in the Rivas study area. Based on our
comparisons, terrain variables can improve land cover classification models that attempt to discriminate
tropical dry forest and early successional areas from other land cover types. Very little forest and successional
vegetation remains in areas of low topography and elevation in the Rivas study area, thus improving the
accuracy of land cover categories mapped with terrain data. Accurate discrimination of wetlands was also
improved with the addition of topographic and elevation data that are linked to hydrologic conditions on
these sites and surrounding land use.

Gain in classification accuracy for the Rivas land cover map are in spite of lower spatial resolution
(e.g., 90m vs. 30m SRTM-DEM) and vertical errors (~16-m mean vertical offset) known to occur with
SRTM elevation values for sub-tropical dry (Florida) and rain forest types (Gillespie et al. 2006, Hofton et
al. 2006). Vertical error and spatial resolution undoubtedly impact models of terrain features, local hill-
slope variation and surface hydrology important for land cover classification (Sesnie et al. 2008).
Nevertheless, the effects of vegetation phenology on synthetic aperture radar data in tropical dry forest
remain unclear. The acquisition date (Feburary 11 0f2000) of SRTM data corresponds with a partial leaf-
off period in the Rivas study area. The C-band wave-lengths (5.8cm) used to create STRM elevation
data interact with canopy foliage and branches and it is not currently known how leaf-off periods affect
elevation values derived from radar data at these latitudes (but see Gillespie et al. 2006). It is, however,
likely that broad-scale land cover categories used with this study are less affected by vertical error in
SRTM elevation data. Mapping of forest composition and more detailed land cover types would likely
require improved elevation data to more accurately model local topography and hydrologic function.

We found that NDVI and NDVIc were also important to the classification results obtained (Figure
3). Anumber of studies report the utility of spectral vegetation indices for discriminating successional
classes in tropical dry forest (Arroyo-Mora et al. 2005, Freely et al. 2005, Kalacska et al. 2005). NDVIc
which incorporates maximum and minimum values from the mid-infrared spectral region (ETM+ band 5)
has shown increased sensitivity and a positive relationship with PAI in temperate coniferous forests (Nemani
etal. 1993, Pocewicz et al. 2004). In our study, NDVIc was highly important to discriminating forest
from other land cover types, principally early successional forest regrowth. Greater NDVIc values in late
successional dry forest are potentially due to greater canopy closure and PAI than in early successional
stages. However, field measurements by Kalascka et al. (2005) found that PAI was generally lower in
later successional stages for two dry forest sites in Costa Rica. High understory development of woody
plants on early successional sites may explain differences observed in Costa Rican forests. Kalascka etal.
(2005) suggested that the interdependence of PAI, canopy openness and local climate variation was
important to quantifying differences among dry forest successional stages. No field measurements were
taken to examine these relationships in the present study and further detailed field studies to determine
relationships between PAI, forest structure and spectral vegetation indices are clearly warranted for
comparison among sites (Kalascka et al. 2005).

The land cover classification methods and data resources explored with the Rivas study area are
applicable to other tropical dry forest areas and ecosystems. Random Forest decision trees provide a
robust method to integrate predictor variables for land cover classification, assess variable importance,
and improve classification accuracy (Breiman 2001). These methods dramatically improve the operability
of remotely sensed data for conservation and biodiversity assessment in a cost-effective manner. Limitations
of the approach used are the temporal separation of the various input data obtained and unavailability of
ground reference data. However, the collection of ground data are unlikely to confirm classification accuracy
of land cover types derived from the available 2000 ETM+image. Rapid land use and land cover change
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in the study area suggests that bootstrapped error estimates from Random Forest trees provide a practical
alternative to the use of ground reference data that is expensive to collect and temporally infeasible.

The linkage between landscape structure, animal populations and ecological function are as yet
unclear in tropical dry forest ecosystems. Importantly, land cover data generated for the Rivas study area
increase opportunities to investigate the effects of forest fragmentation on spider monkey and other wildlife
populations and potential outcomes of ongoing forest restoration activities in the study area. Future efforts
that characterize land cover applying the classification techniques validated with this study, as well as up-
to-date multispectral images, will contribute to improved knowledge of land cover dynamics and changes
as they occur in this and other tropical dry forest landscapes.
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